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Abstract

Measurements of chemical-exchange processes by NMR are widely used to obtain valuable information about molecular dynam-
ics and structure. Here, a computational method is introduced to assess the influence of chemical exchange on spin relaxation rates.
The method is based on the inclusion of a random exchange process in product operator calculations on a microscopic level. This
product operator approach can be applied to estimate exchange contributions when using sophisticated pulse sequences that cannot
be easily described analytically. The method applies to the full range of exchange times measurable by NMR and can incorporate
interference effects between exchange and other processes such as scalar coupling. To demonstrate its utility, simulated relaxation
data were compared with theoretical predictions of spin-locking and Carr-Purcell spin-echo sequences with hard and adiabatic
pulses, using different time scales for a two-site chemical-exchange process. Finally, simulations were used to examine a system
in which a second random process is superimposed on a simple two-site exchange process. The method was found to provide a sim-
ple and robust tool to analyze pulse sequences and equations commonly used to study exchange-induced relaxation.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Chemical and physical processes causing perturba-
tion of the magnetic environment of atoms are usually
referred to as ‘‘chemical exchange.’’ The time scales of
many biologically important processes fall in the micro-
second-millisecond range, making NMR a powerful tool
to study these processes [1]. Chemical-exchange pro-
cesses can be assessed from measurements of spin relax-
ation rates. In such applications, common approaches
include the determination of the transverse relaxation
rate constant (R2) using a Carr-Purcell-Meiboom-Gill
(CPMG) technique [2,3] and the spin–lattice relaxation
rate constant in the rotating frame (R1q) measured by
spin-locking magnetization along an effective field
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[4,5]. Theoretical descriptions of these techniques are
bountiful in the NMR literature, but the Bloch-McCon-
nell equations [6,7] are probably most often used to de-
scribe the evolution of exchanging magnetization.
Analytical expressions obtained from the Bloch-
McConnell equations typically have complex form. As
a result, approximate expressions are more often used
to analyze experimental data. Consider, for example, a
simple two-site exchange reaction at equilibrium

A ()
ka

kb
B:

The chemical-exchange rate constant for this reaction
can be written as

kex ¼ ka þ kb ¼ ka=pb ¼ kb=pa;

where pa and pb are normalized equilibrium populations
(pa + pb = 1) at magnetic sites a and b, respectively. The
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chemical-shift difference between sites is dx = |xa�xb|.
Approximate analytical expressions commonly used to
analyze exchange-induced effects on relaxation are given
in Eqs. (1)–(5) below.

For a CPMG experiment in the fast-exchange limit
(kex � dx), the transverse relaxation rate constant is gi-
ven by [8]

R2;ex ¼ ðpapbdx2=kexÞ 1� tanh kexscp=2
� �

= kexscp=2
� �� �

;

ð1Þ
where scp is the time between centers of 180� pulses of
length Tp � scp. Under the condition pa � pb, an alter-
native expression describing relaxation at site a for all
time scales is [9]

R2;ex ¼ papbd
2kex k2ex þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
3=

p
scp

� �4

þ p2adx
4

� 	s" #,
:

ð2Þ
On the other hand, the relaxation rate constant in the
slow-exchange regime (kex � dx) at site a for pa P pb
follows [10,11]

R2;ex ¼ ka 1� sin dxscp=2
� �

= dxscp=2
� �� �

: ð3Þ

In a conventional spin-lock experiment, magnetiza-
tion decays along an effective field, xeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ Dx2
p

,
where x1 is the amplitude of the RF irradiation (in units
of rad/s) and Dx is the resonance offset defined as the
difference between the Larmor frequency and the fre-
quency of the RF irradiation xRF. In the fast-exchange
limit, the rotating frame longitudinal relaxation rate
constant can be approximated by [4,5]

R1q;ex ¼ sin2apapbdx
2kex= x2

eff þ k2ex
� �

; ð4Þ

where sin2a ¼ x2
1=x

2
eff and Dx = paxa + pbxb � xRF.

Another expression recently proposed to describe R1q, ex

in the slow-exchange regime with non-equal populations
is [12]

R1q;ex ¼ sin2a papbdx
2kex= x2

aeffx
2
beff=x

2
eff þ k2ex

� �
; ð5Þ

where xaeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa � xRFÞ2 þ x2

1

q
and xbeff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxb � xRFÞ2 þ x2
1

q
are the effective fields at sites a and

b, respectively.

Unfortunately, Eqs. (1)–(5) offer no possibility to ac-
count for changes in experimental conditions. In prac-
tice, the agreement between the actual and the
estimated relaxation rates depends on multiple experi-
mental factors, particularly those parameters affecting
the RF pulses. For example, the observed relaxation
rates depend on the length of the pulses in the CPMG
train or whether the phase of the spin-lock pulse is mod-
ulated in R1q experiments. The theoretical description
becomes even more complex when the pulse sequence
is implemented with shaped pulses having time-depen-
dent amplitudes and phases, as used with adiabatic
pulses [13].

Simulations of the influence of chemical exchange on
different pulse sequences have been performed using
numerical solutions of the system differential equations
[14–16]. Among these methods, a preferred approach
is based on homogenized Bloch–McConnell equations
[16]. However, all of these methods treat the exchange
rate as a macroscopic relaxation parameter and are lim-
ited to first-order kinetic reactions that can be described
by linear differential equations. In principle, by increas-
ing the number and complexity of the differential equa-
tions, these methods can be adapted to simulate higher
order kinetic reactions. Here, we demonstrate an alter-
native approach based on a Monte Carlo simulation
that treats the chemical-exchange process at the micro-
scopic level. A similar approach has been used to ana-
lyze collisional relaxation during neutron transport in
solids [17] and ion motion in plasmas [18] and is used
in laser chemistry [19,20]. Consideration of relaxation
on a microscopic level is the most straightforward way
to simulate some complex processes of exchange that oc-
cur in actual spin systems. Examples of such cases that
come to mind include exchange processes in proteins
and peptide solutions that are modulated by cooperative
and non-cooperative conformational fluctuations [21–
25], a distribution of exchange rates or chemical shifts
[26], and the combined effect of exchange and diffusion
processes in a magnetic field gradient [27].

The method described below uses a random exchange
function in standard product-operator calculations. Re-
sults from Monte Carlo simulations of conventional
CPMG and R1q experiments are presented and com-
pared with predictions from Eqs. (1)–(5). Novel applica-
tions of the method are also demonstrated. Specifically,
the method is used to simulate the effect of chemical-
exchange-induced relaxation during an adiabatic
Carr-Purcell (CP) sequence. Finally, simulations are per-
formed to evaluate the effect of a second random process
that is superimposed on a simple two-site exchange
process in a R1q experiment.
2. Method

In the present computational approach, as in the con-
ventional product operator approach, the density matrix
r (t) evolves in response to a sequence of events, and be-
tween events, the spin Hamiltonian H is time indepen-
dent [28]. The density matrix at the time when the
(i + 1)th event occurs is

rðtiþ1Þ ¼ e�iHDtirðtiÞeiHDti ; ð6Þ
where the variable Dti is the time separating the ith and
(i + 1)th events. Chemical exchange produces a change
in H because spins spontaneously relocate to sites with
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different resonance offsets. Here, it is assumed that these
exchange events occur instantaneously and can be trea-
ted as successive frequency jumps occurring at ti, ti + 1,
ti + 2. . . Accordingly, the interval of time between events
is variable, and Eq. (6) must be solved successively in
time as each change of H takes place. Because exchange
is a random process, the complete pulse sequence must
be evaluated N times, where N is a statistically large
number. To obtain a solution to characterize an ensem-
ble of spins, the average of N spin trajectories must be
calculated. One possible trajectory of the density matrix
evolution in the presence of the exchange can be de-
scribed as

rkðtÞ ¼
Y

e�iHiDtirkð0Þ
Y

eiHiDti : ð7Þ

The time-independent Hamiltonian during an interval
Dti is

Hi ¼ H 0
i þ DxiI z: ð8Þ

where H 0
i describes the RF irradiation, in addition to

other types of spin interactions (e.g., scalar coupling),
and Dxi is the resonance offset during this particular
interval. The full density matrix is simulated by calculat-
ing the N random evolution trajectories and obtaining
the result as an average of the evolution of the spin
system,

rðtÞ ¼
XN
k¼1

rkðtÞ=N : ð9Þ

Subsequently, the exchange contribution is calculated
from

Rex ¼ ln I0=Ið Þ=T seq; ð10Þ

where Tseq is the pulse sequence duration, I and I0 are
amplitudes of some component of the density matrix
at the end of the pulse sequence with and without the
presence of the chemical exchange process, respectively.
Depending on the type of pulse sequence, I and I0 repre-
sent basic operators Iax;y;z; I

b
x;y;z; I

a
x;y;z þ Ibx;y;z or any kind of

zero or n quantum coherences. For the case in which the
relaxation process is not described by a simple exponen-
tial function, the time dependence of amplitude I can be
analyzed.

The central idea of the computational method is
straightforward. An important aspect of the method is
the procedure used to create a random interval between
jumps for simulating the exchange process. For a process
with correlation time sex (=1/kex), we assume the proba-
bility P (Dt) of the following interval between two jumps
being Dt depends exponentially according to P(Dt) �
e�Dt/sex. A computer generates a random number
y 2 [0,1] having uniform distribution. Using this random
number, a random time interval Dt 2 [0,1] with a nor-
malized exponential distribution P (Dt) = e�Dt/sex/sex can
be obtained by solving the equation [17]
Z Dt

0

PðxÞdx ¼ y: ð11Þ

As a result, with y distributed uniformly, an exponen-
tially-distributed random time interval is obtained from

Dt ¼ �sex lnð1� yÞ: ð12Þ

To simulate different populations of sites, the value of
sex in Eq. (12) can simply be varied for the different sites
as siex ¼ sex=pi. Although only the two-site exchange case
is considered here, the method can be readily generalized
to other cases. The protocol of simulation each trajec-
tory in the case of n sites should include: (i) randomly
choosing the starting site, (ii) randomly seeking the site
dependent interval Dt, and (iii) randomly choosing the
site of destination after every jump. Steps (ii) and (iii)
are repeated until T seq ¼

P
Dti. Possible modifications

of this protocol to permit adaptation to more complex
cases are briefly mentioned here. (a) A distribution of

the exchange rates: any expected distribution function
can be considered by simple modification of the Eq.
(12) for generating the site dependent interval Dt. (b)
A distribution of chemical shifts of the exchangeable sites:
this case can be simulated as an n site case with distrib-
uted probability of sites. (c) Diffusion of the exchange-

able sites in a magnetic field gradient. This case can be
realized by including in (ii) the random walk process
in the presence of a magnetic field gradient, which works
simultaneously and independently from the site ex-
change process. The instantaneous product operator cal-
culation must use the sum of chemical exchange and
space dependent frequency shift values. (d) The modula-

tion of chemical exchange process by another random pro-

cess. This case can be simulated in two different ways:
(1) by increasing the number of exchangeable sites or
(2) by directly including another random process which
changes the properties of the sites. For example, con-
sider a two-site (pa and pb) exchange process which
can go faster or slower, with dependency on another
random process having two probabilities po and pc. This
case describes the four site exchange process with prob-
abilities: popa, popb, pcpa, and pcpb. An alternative way is
to include another simultaneous and independent pro-
cess that changes the exchange rates. The results of sim-
ulation performed in this latter manner are presented
later.

A procedure to estimate the accuracy of the final re-
sult is an essential component of any simulation method.
The standard deviation DRex depends on the value of the
ratio I0/I and on parameters N, Tseq, and sex [29]. The
necessary number of repetitions N cannot be estimated
before performing a simulation because I0/I is unknown
and is a nonlinear function of sex. The approach used
here is equivalent to that usually practiced in Monte
Carlo simulations [29]. Specifically, q separate simula-
tions are performed to obtain q unique estimates of
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the relaxation rate constant Ri
ex. After finding the aver-

age, Rex ¼
P

Ri
ex=q, the standard deviation is calculated

from DRex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðRi
ex�RexÞ2

q

r
. The simulation is repeated

with increasing N until DRex=Rex reaches the required
upper limit. In the present work, the estimated precision
of the simulations was better than 5% (DRex=Rex < 0:05)
using q = 10. Because precision was fixed, the time re-
quired to obtain a single data point varied from 0.1 to
100 point/s when using a computer with a 3 GHz
processor.
3. Simulation results

3.1. The CPMG experiment

The CPMG pulse sequence can be written as
90

�

y � ðscp=2� 1800x � scp=2Þm, where m is the echo num-
ber. In this case, I and I0 represent the operators I

a
x þ Ibx .

Fig. 1 shows R2,ex data plotted as a function of kex for a
CPMG experiment using pa = pb and dx/2p = 100 Hz,
for two different scp values. The data shown describe
CPMG experiments performed with ideal 180� pulses
(Tp � scp) using either the first or 12th echo. With these
parameters, Eqs. (1)–(3) predict the same R2, ex data in
the slow-exchange regime. In the intermediate and
fast-exchange regimes, Eq. (2) gives a slightly bigger va-
lue of R2, ex than that predicted by Eq. (1). In this region,
greatest precision is expected with Eq. (1), because Eq.
(3) describes only slow exchange and the application
Fig. 1. The R2, ex dependency on kex for CPMG experiments, as
predicted by simulations (symbols) or theoretically from Eqs. (1)–(3)
(dotted, dashed, and solid lines, respectively). The calculations
assumed ideal 180� pulses (Tp � scp), pa = 0.5, dx/2p = 100 Hz, and
two different values of scp: 2.5 ms (square) and 1.25 (triangle).
Simulations were carried on the first (solid symbol) and twelfth (open
symbol) echo.
of Eq. (2) is incompatible with the condition pa = pb.
Simulated data generated for the 12th echo (m = 12)
show good agreement with Eq. (1) over a broad range
of R2, ex and kex values. Such good agreement between
theory and simulation is supporting evidence of the
robustness of our computational method. For the case
of the first echo, plots in Fig. 1 reveal significant dis-
agreement between simulated data and theoretical
expectations (Eq. (1)). Interestingly, the discord between
theory and simulation observed in this case (m = 1) is
consistent with the theoretical expectation of the exis-
tence of a faster second pseudo-exponential term [30].
Understanding the non-exponential decay in CPMG
experiments is important for studies of fast relaxing
spins (e.g., large proteins) which must be performed with
small m to minimize signal loss [31]. According to Fig. 1,
the non-exponential behavior reaches a maximum when
kexscp � 2

ffiffiffi
3

p
and becomes negligible approximately in

the range of
ffiffiffi
3

p
=5 > kexscp > 20

ffiffiffi
3

p
. These features char-

acterize not only the simulations shown (Fig. 1), but also
data obtained from CPMG simulations using other val-
ues of scp (data not shown). To further demonstrate the
dependence on echo number, Fig. 2 shows R2, ex data
plotted as function of m, for the case of kexscp ¼ 2

ffiffiffi
3

p
.

Interestingly, when using m = 1, the simulated value of
R2, ex deviates by as much as 25% from theoretical value
(Eq. (1)). As can be seen from Fig. 2, accuracy better
than 5% can be reached by performing measurements
with m > 5.

In the slow-exchange regime, the simulation method
was used to investigate the R2, ex dependence on the
CPMG field strength, vcp = 1/2scp. In this case, the oper-
ator of interest is Iax (for site a only). Fig. 3 shows R2, ex

data plotted as a function of vcp, for the cases of m = 1
and 12, and separately for pb = pa and pb „ pa cases.
Fig. 2. The R2, ex dependence on echo number m. Calculations were
performed with dx/2p = 100 Hz, pa = 0.5, scp = 1.25 ms, and
kex ¼ 2

ffiffiffi
3

p
=scp.



Fig. 3. The R2, ex dependence on the CPMG field strength vcp = 1/2scp,
for two different populations, pa = 0.5 (square) and pa = 0.95 (trian-
gle). Other parameters were: dx/2p = 480 Hz and kex = 42 Hz. The
data for the first (solid symbol) and twelfth (open symbol) echo are
shown. Dotted, dashed, and solid lines correspond to the theoretical
predictions of Eqs. (1)–(3), respectively.

Fig. 4. The R1q, ex dependence on kex for off resonance experiments
with pa = 0.75 for dx/2p = 1000 Hz (solid) and dx/2p = 480 Hz
(open). Dotted and solid curves were calculated theoretically using
Eqs. (4) and (5), respectively.

Fig. 5. The offset dependence of R1q, ex using dx/2p = 2000 Hz
(square), 1000 Hz (circle), 480 Hz (up triangle), and 200 Hz (down
triangle). Other parameters were: pa = 0.95, kex = 1638 Hz, and x1/
2p = 805 Hz. Dotted and solid curves were calculated theoretically
using equation Eqs. (4) and (5), respectively.
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According to theory [11], in the low end of the vcp range,
R2, ex oscillates and has an amplitude scaled linearly to
ka = kexpb, with a tendency to extrapolate to ka as
vcp ! 0. The asymptotes of these dependencies are de-
scribed well by Eq. (2). For the case of pb = pa, the sim-
ulations results are identical for m = 1 and m = 12 and
perfectly agree with Eq. (3). However, for the case
pb „ pa and large m, Eq. (2) provides the best descrip-
tions of the simulation results, whereas Eq. (1) also
yields close agreement in the high CPMG field strength
limit (dx < vcp). According to these and other simula-
tions conducted under different conditions (data not
shown), Eq. (1) appears to be applicable over a much
wider range of exchange time scales than those predicted
by theory and can be applied to all values of kex pro-
vided the condition dx < vcp is satisfied.

3.2. Off-resonance R1q experiments

A convenient pulse sequence used for off-resonance
R1q measurement can be written as Ad+ � spin lockx
� Ad�, where Ad+ and Ad� are adiabatic passage pulses
used to rotate magnetization by angle a for spin-locking
and to rotate the magnetization back to the longitudinal
axis after the spin-lock pulse, respectively [32]. In this
case, I and I0 represent the operators Iaz þ Ibz . To avoid
any effects from Ad+ and Ad�, in the calculations these
pulses were assumed to perform ideal transformations:
Iz ! Iz sin aþ Iy cos a and Iz sin aþ Iy cos a ! Iz,
respectively.

Fig. 4 shows off-resonance R1q, ex values plotted as a
function of kex for the case of pa = 0.75 with two differ-
ent values of dx. The R1q, ex values obtained by simula-
tion are in excellent agreement with the curves generated
with Eq. (5) over the complete range of time scales,
whereas the curve predicted by Eq. (4) deviates consid-
erably in the slow exchange regime. Furthermore, signif-
icant disagreement between data generated with Eq. (4)
versus Eq. (5) and the simulated data remains as dx and
Dx vary, as shown in Fig. 5. To the best of our knowl-
edge the experimental verification of the Eq. (5) has been
reported only once before [33]. Although a previous
report [12] already demonstrated excellent agreement
between Eq. (5) and simulations based on Bloch-
McConnell equations, the simulation results obtained
here using the alternative Monte Carlo approach can



D. Idiyatullin et al. / Journal of Magnetic Resonance 171 (2004) 330–337 335
be considered as further evidence for the validity of Eq.
(5).
Fig. 6. The dependence of exchange contribution during adiabatic CP
pulse sequence R2q;ex on kex for the five different values of Tp: 12 ms
(square), 6 ms (circle), 3 ms (up triangle), 1.5 ms (down triangle), and
0.75 ms (diamond). Other parameters: pa = 0.5, dx/2p = 60 Hz,
xmax

1 =2p ¼ 10=T p. The theoretical approximations were calculated by
using Eq. (18) with R2, ex values calculated according to Eq. (1).
3.3. The adiabatic Carr-Purcell experiment

The next experiment considered here is the adiabatic
CP pulse sequence, 90

�

y � ðHS1x �HS1x �HS1�x�
HS1�xÞm, where HS1 denotes a hyperbolic secant pulse
[34]. Each HS1 pulse performs an adiabatic full-passage
(180�) of duration Tp. The amplitude and frequency
modulated functions for the HS1 pulse [35] are given by

x1ðtÞ ¼ xmax
1 sech bsð Þ; ð13Þ

xRFðtÞ ¼ xc þ A tanh bsð Þ; ð14Þ
where xc is the carrier frequency, b is a truncation factor
(sech b = 0.01), s is normalized time (=2t/Tp � 1), A is
the amplitude of the frequency sweep, and xmax

1 is the
maximum value of x1 (t). The simulated data is com-
pared with theoretical estimation of the exchange contri-
bution during each HS1 pulse as described below. For
simplicity, the case considered is

A ¼ xmax
1 ; ð15Þ

for the on-resonance condition (xo = xc). Accordingly,
the amplitude of effective field xeff during the HS1 pulse
remains constant (xeff ¼ A ¼ xmax

1 ). Two approxima-
tions are used in the calculations. First, the vector of xeff

remains orthogonal to the magnetization vector during
the pulse [13], which results in transverse relaxation in
the rotating frame R2q, ex about the time-dependent
direction of xeff [34]. Second, for estimation of R2q, ex

the approximate expression in the fast exchange limit
is used [34]

R2q;ex ¼ R2;excos
2a: ð16Þ

In these approximations, the average exchange contribu-
tion to relaxation during adiabatic pulse can be obtained
as

R2q;ex ¼
R2;ex

T p

Z T p

0

cos2aðtÞdt: ð17Þ

Using Eqs. (13) and (14) to describe a (t), for HS1 the
expression becomes

R2q;ex ¼
R2;exðb� 1Þ

b
: ð18Þ

Fig. 6 shows R2q;ex values plotted as a function of kex for
the cases of pa = 0.5 using five different values of Tp. The
solid lines represent the theoretical predictions based on
Eq. (18) with R2, ex values calculated according to Eq.
(1). Peak RF amplitude was chosen as xmax

1 ¼ 20p=T p

to satisfy the condition of Eq. (15). The theoretical
approximation (Eq. (18)) describes the simulated data
within �10% accuracy over the full range of kex values.
As was shown previously [34], an advantage of the adi-
abatic CP pulse sequence is the ability to modulate the
influence of chemical exchange on relaxation rates by
adjusting pulse parameters (e.g., xmax

1 , A, Tp, and mod-
ulation functions).

3.4. Chemical exchange modulated by a second random

process during a R1q experiment

In systems such as proteins or peptide solutions, a
two-site chemical exchange model is often an oversim-
plification of the actual molecular dynamics. The
exchange parameters such as kinetic rates and chemi-
cal-shift values depend on conformational dynamics.
Here, simulations are performed for the case in which
a second random process, that originating in conforma-
tional dynamics, modulates the two-site chemical ex-
change process.

For simplicity, the two sites are assumed to have
equal populations (pa and pb). In contrast to the previ-
ous simulations above, the present simulation uses two
independent random time-interval generators. For the
purpose of demonstration, the second random process
is also chosen to have equal populations (po and pc) or
correlation times (so and sc), with modulation frequency
given by km = 1/posc = 1/pcso. Indexes o and c are used
to denote conformational states characterized by less
and more hindrance (open and closed) to the exchange
process. The simple case chosen for consideration here
is kex = ka + kb for state o and kex = 0 for state c. Fig.
7 shows on-resonance R1q, ex values plotted as a function
of kex for different values of km. For comparison, the
plotted lines in the figure depict the expected values
of R1q, ex (kex/2) (solid line) and 0.5R1q, ex (kex) (dash
line), obtained from Eq. (4) for po = 1 (always open).



Fig. 7. The on-resonance R1q, ex values plotted as a function of kex in
the presence of an exchange modulation process with po = pc for six
different values of km, which are: 0.1 Hz (square), 1 kHz (circle), 5 kHz
(up triangle), 10 kHz (down triangle), 100 kHz (diamond), and
1000 kHz (cross). The lines are calculated (Eq. (4)) values of
R1q, ex (kex/2) (solid line) and 0.5R1q, ex (kex) (dash line) for po = 1
always open case. Other parameters: pa = 0.5, dx/2p = 300 Hz d1/
2p = 3000 Hz.
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According to Fig. 7 these two cases agree with simula-
tion data for the two limiting cases: kex � km and
kex � km, respectively. These agreements are to be ex-
pected. The fast modulation process in the po = pc case
acts as a probability factor decreasing the chemical-ex-
change rate by a factor of two. Alternatively, if the mod-
ulation process is very slow, the system can be
considered as a sum of o and c states existing indepen-
dently. As a consequence of this, in the slow modulation
regime nonexponential behavior of relaxation decay is
observed. The behavior of R1q, ex (kex) in the intermedi-
ate regime depends on many factors including pulse se-
quence parameters. These simulation results
demonstrate how a second random process can have a
significant non-linear effect on relaxation rates, although
experimental verification of these findings is needed.
4. Conclusions

A method has been described to simulate the effects
of chemical exchange on relaxation. The approach is
based on the inclusion of a random exchange process
in product operator calculations on a microscopic level.
As compared with other simulation methods that are
based on the full analysis of the system of Bloch-
McConnell equations [14–16], this alternative method
has the advantage of simplicity and can be easily
adapted to evaluate spin dynamics in highly complex
systems. Here, it was shown that the method can be used
to evaluate existing theoretical approximations and to
predict exchange-induced relaxation rates when using
complex pulse sequences. As shown, the method seizes
all ranges of the time scale of exchange measurable by
NMR. The consideration of the exchange process on
the microscopic level allows straightforward inclusion
of such effects as the distribution of kinetic rates and
chemical shifts, diffusion in an inhomogeneous magnetic
field, and modulation of the exchange by other random
processes. The described method is included as a sub-
program in NMRKITCHEN which is available via
Internet at www.cmrr.umn.edu.
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